
ЦЕНТРАЛЬНАЯ СТАНЦИЯ ЮНЫХ ТЕХНИКОВ имени Н. М. ШВЕРНИКА

Модель ветродвигателя

Люди давно уже заставили ветер работать на себя. Он поднял паруса первых кораблей, крутил крылья мельниц, качал воду из под земли.

Да и теперь, в век электричества и атомной энергии, ветер остался нашим верным помощником. Тысячи ветродвигателей работают в колхозах и совхозах: качают воду на животноводческие фермы, помогают готовить корма, обрабатывают зерно.

Полярникам ветродвигатели дают свет и тепло, питая энергией электрические станции. Советские конструкторы создали особый ветродвигатель для Арктики, который помогает вести метеорологические наблюдения. Поставят полярники его где-нибудь на пустынном берегу и уедут. Особое устройство на ветродвигателе самостоятельно отмечает скорость и направление ветра, температуру и давление воздуха, а автоматическая радиостанция посылает сигналы о показаниях приборов.

Действующую крупномасштабную модель ветродвигателя может построить каждый кружок юных техников. Это будет не игрушка, а настоя-

щее техническое сооружение.

При желании эту модель можно превратить в актоматическую метеорологическую станцию или заставить качать воду для небольшого фонтана или бассейна. Конечно, такая работа доступна только более подготовленным кружкам.

Как устроена модель ветродвигателя

Общий вид модели ветродвигателя показан на обложке и рисунке 1. Конструкцию этой модели разработал Н. М. Митрофанов, заведующий лабораторией Центральной станции юных техников имени Н. М. Шверника. Им же составлены рисунки и описание модели.

Высокая башня из деревянных брусков поддерживает головку ветродвигателя с трёхлопастным ветроколесом и хвостом.

Нижняя часть башни устроена в виде пирамиды: широкое основание необходимо для большей устойчивости сооружения.

Ветроколесо всегда должно быть направлено павстречу ветру. Но ветер меняет направление, дует то с одной, то с другой стороны. Поэтому ветроколесо укрепляют на поворотной головке. Длинная решетчатая ферма заканчивается большим фанерным хвостом. Ветер давит на плоскость хвоста и этим устанавливает ветроколесо в рабочее положение.

Головка ветродвигателя вращается на вертикальной оси из четырех брусков. Ось пропущена через отверстие в верхней площадке башни и опирается своим нижним концом на другую площадку, укрепленную ниже.

Материалы и инструменты. Для постройки модели нужны: 10 деревянных брусков сечением 2×2 см и длиной по 300 см, 30 деревянных брусков такого же сечения, но длиной около 180 см; куски фанеры толщиной 3—5 мм; гвозди длиной 2 см; немного жести (можно использовать консервные банки); 100 см железной проволоки диаметром 4 мм; казенновый или другой водоупорный клей, масляная краска.

Из инструментов потребуются: рубанок, два-три молотка, ручная ножевка, плоскогубцы, шило, ножницы и кисти.

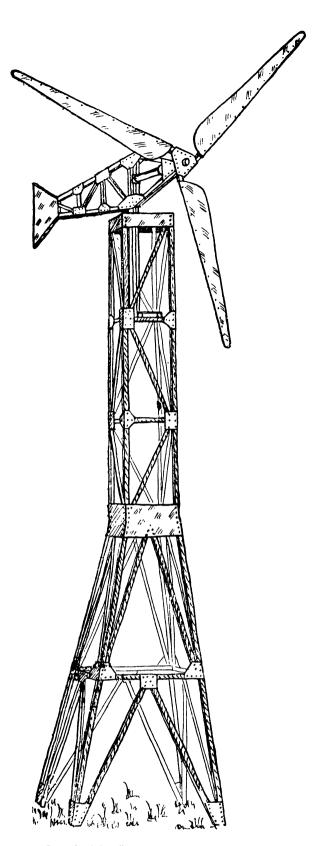


Рис. 1. Общий вид модели ветродвигателя

Постройка башни

Для работы по строительству крупномасштабной модели ветродвигателя лучше организовать три бригады по 3—4 человека в каждой. Одна бригада будет строить башню, другая — головку и хвост, третья ветроколесо.

Удобнее всего работу вести на длинном столе, верстаке или просто на деревянном полу. Можно устроиться и на площадке с ровным плотным грунтом.

Рисунок 2 изображает боковую сторону башни с внутренней

Боковые бруски нижней 1 и верхней 2 частей имеют длину по $300\ cm$. Поперечные бруски 10 отпилите длиной $46\ cm$. Для одной стороны башни потребуется пять таких брусков.

Боковые бруски нижней части башни 1 расположите так, чтобы между их нижними концами было расстояние $120\ cm$, а между верхними — $46\ cm$. Один брусок 10 проложите между верхними концами боковых брусков. Средний брусок 12 отмерьте и отпилите по месту. Он должен быть расположен на половине высоты этой части башни.

Выпилите из фанеры накладки 11, 15. Форма их понятна из рисунка. Прибейте к боковым брускам сначала верхнюю накладку 11 шириною 25 см, а затем соедините накладками 15 боковые бруски с средним бруском 12.

Раскосы 13 соедините с боковыми и поперечными брусками также при помощи накладок 14. Следите за тем, чтобы концы поперечных брусков плотно упирались в боковые бруски. От этого во многом зависит прочность сооружения.

Верхнюю часть башни 2 собирите также по рисунку 2. Следите, чтобы поперечные бруски были под прямым углом к боковым и на равном расстоянии друг от друга. Ширина верхней накладки 18 равна 10 см.

Окончив одну сторону башни, сделайте точно такую же другую. Заготовьте комплект поперечных связей и накладок для двух остальных сторон. Боковых брусков для них не требуется: стенки нужно будет

прибить к боковым брускам уже изготовленных сторон башни. Лучше сперва прибить к поперечным брускам 10 накладки, а затем прибить стенки к боковым брускам собранных сторон. Эту работу обязательно надо делать на хорошей опоре. Если вбивать гвозди в башню, не положенную на опору, то удары молотка могут расшатать соедине-

ния, и она не будет достаточно прочной. На верхнюю кромку башни (рис. 3) прибейте кусок фанеры 8. Посредине его надо сделать отверстие диаметром 7 см. Сверху около отверстия прибейте четыре бруска. Внутренние стороны их должны касаться краёв отверстия. Эти стороны брусков необходимо обить полосками жести, которые будут служить подшипниками для верхней части вер-

тикальной оси 5, на которой вращается головка (рис. 1 и 4).
Площадку 9 для опорного подшипника (подпятника) оси головки сделайте из двух кусков фанеры, между которыми проложена рамка из брусков сечением 2×2 см. Посредине этой площадки прибейте кружок из двух слоёв жести. В центре кружка сделайте отверстие диаметром 0,5 см (оно должно быть и в фанерных дощечках площадки).

На этом работа над башней заканчивается. Если всё сделано внимательно, то такая башня получается прочной и выдержит напор сильного ветра.

Постройка головки

Головка ветродвигателя сделана в виде фермы. На рисунке 4 показано её устройство.

Работу начните с изготовления оси 5. Возьмите четыре бруска длиной по 170 см и соедините их гвоздями в один квадратный брус — получится прочная деталь, которая будет служить осью головки.

На расстоянии 70 *см* от верхнего конца оси сделайте накладку 20 из брусков, обработанных так, чтобы получился цилиндр высотой 4 *см*, охватывающий бруски оси. Поверх накладок прибейте полоску жести 21 — она необходима, потому что этой частью ось входит в подшипник на верхушке башни.

Нижний конец — торец оси — обработайте ножом так, чтобы получилась поверхность, немного выпуклая к центру. Прикройте торцовую часть кружком из жести с отверстием в центре: он необходим для уменьшения износа конца оси.

Теперь можно приступить к сборке фермы. Передняя её часть, поддерживающая винт, — короткая. Её длина — 60~ см. Обе её балочки 22 сделайте из двух брусков, сбитых в одно целое гвоздями. Балочки 22 соедините с осью 5 фанерными накладками 26. Спереди балочки также соедините накладками 23, но между ними должно оставаться свободное пространство для вала ветроколеса.

На рисунке видна ещё одна деталь 24: это подшипник для вала ветроколеса. Сделайте его из проволоки днаметром 4 мм, согнув её прямо по валу винта. Концы проволоки укрепите проволочными петлями на балочках 22.

Хвостовую часть собирите из брусков сечением 2×2 см. Внешние бруски 3 имеют длину 180 см и соединяются между собой промежуточными стойками и раскосами, как показано на рисунке.

Оперение хвоста 4 сделайте из фанеры.

Бруски хвостовой части 3 имеют толщину 2 см, а расстояние между накладками 26-4 см. Поэтому для соединения хвостовой части с накладками 26 прибейте на концах брусков 3 накладки 25 из брусков 2×1 см.

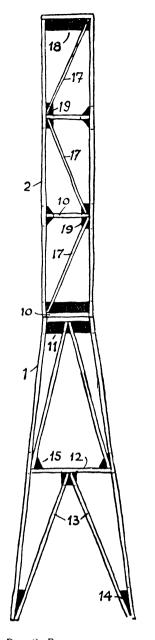


Рис. 2. Боковая сторона башни

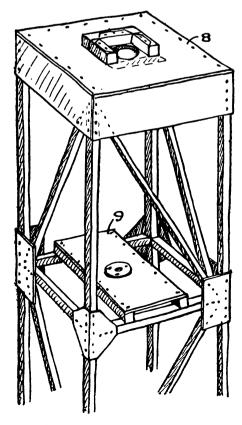


Рис. 3. Верхняя часть башни

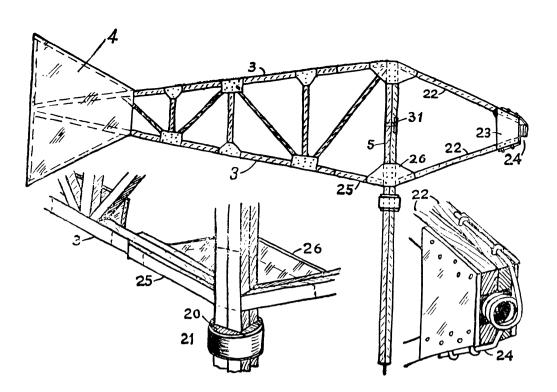


Рис. 4. Головка ветродвигателя

Постройка ветроколеса

Ветроколесо состоит из трёх фанерных лопастей, расположенных под углом 120° друг к другу. Общий вид ветроколеса показан на рисунке 1, а детали его — на рисунке 5.

Для вала 7 выстрогайте круглую палку диаметром 4 см и длиной 75 см. На её переднем конце укрепите держатель стержней для лопастей ветроколеса. Держатель состоит из двух фанерных треугольников 27 с усеченными углами. Между треугольниками при помощи гвоздей укреплены стержни 28 из брусков сечением 2×2 см и длиной 150 см. Бруски надо предварительно обработать рубанком так, чтобы получился скос для крепления лопасти ветроколеса. Скос у основания стержня образует угол с боковой стороной стержня в 43—45°, который постепенно уменьшается до 15°.

Фанерные лопасти имеют у основания ширину 10 см, а на конце —

Вал ветроколеса 7 укрепите в держателе посредством брусков 29. Такие же бруски можно для прочности поместить и с передней стороны держателя.

В том месте, где вал охватывается подшипником головки, его надо предохранить жестяной трубкой 30 от стирания.

В торец свободного конца вала вбейте большой гвоздь без шляпки так, чтобы он выступал из вала на 6 *см.* Этим гвоздем вал укрепляется в жестяном подшипнике 31 на вертикальной оси головки (см. рисунок 4). В этом месте полезно проложить жестяные шайбы.

Чтобы вал с ветроколесом не мог выскочить из подшипников головки, при сборке наденьте на него фанерную шайбу и вбейте позади шайбы два гвоздя. Это предупредит движение вала вперёд.

Рис. 5. Центральная часть ветроколеса

Сборка ветродвигателя

Сборку модели ветродвигателя сделайте, пока башия лежит на эсмле. Обильно смажьте все трущиеся места тавотом или техническим вазелином. Вставьте в отверстие на верхней площадке башни ось головки и только после этого поднимайте башню с ветродвигателем в вертикальное положение.

Башню надо хорошенько укрепить на земле. Поэтому в месте её установки вбейте в землю колышки и прочно привяжите к ним основание башни.

Если вы окрасите ветродвигатель масляной краской, он будет красивее и долговечнее.

ЧТО ЧИТАТЬ ОБ ИСПОЛЬЗОВАНИИ ЭНЕРГИИ ВЕТРА И О САМОДЕЛЬНЫХ ВЕТРОДВИГАТЕЛЯХ

- **А. В. Кармишин.** Ветер и ветродвигатели. Госкультпросветиздат, 1952.
- **А.** В. Кармишин. Ветер и его использование. Госэнергоиздат, 1951.
- E. M. Фатеев. Как сделать самому ветроэлектрический агрегат. Госэнергоиздат, 1949.
- С. Б. Перли. Самодельная ветроэлектрическая установка. Госэнергоиздат, 1953.
- Б. Б. Кажинский. Простейшая ветроэлектростанция КД—2. Изд. ДОСАРМ, 1949.

Техническое творчество. Изд. «Молодая гвардия», 1955, стр. 143—148 (описание роторного ветродвигателя для питания радиоустановок).

Ветроэлектростанция. Журнал «Техника — молодёжи»,

1953, № 6, стр. 36—37.

Статьи в журнале «Радио»: 1947, №№ 7 и 9; 1949, № 4, 1950, №№ 3, 8 и 9; 1956, № 4.

«ДЛЯ УМЕЛЫХ РУК»

ВЫШЛИ ИЗ ПЕЧАТИ: «Байдарка»; «Воздушные змеи»; «Воздушный шар»; «Детекторный радиоприемник ЦСЮТ-1Д»; «Модель ветродвигателя»; «Модель катера»; «Модель подводной лодки»; Модель шагающего экскаватора»; «Модель яхты»; «Самодельные электродвигатели»; «Самодельный телефонный аппарат»; «Сделай сам» (Игрушки для новогодней ёлки); «Схематическая модель планера»; «Схематическая модель самолета».

ПОДГОТОВЛЕНЫ К ПЕЧАТИ: «Батарейный радиоприемник»; «Походный радиоприемник»; «Сетевой радиоприемник».

Редактор А. Стахурский

Л93508. Зак 01121.

Тираж 100 000.

